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Summary. This paper reports a model study of intramolecular energy transfer in 
unimolecular isomerization reaction of cyclobutanone. The calculations of intra- 
molecular energy flow were carried out using the theory of Gray and Rice as 
extended by Zhao and Rice. The results of the calculations are compared to those of 
local Lyapunov function analysis, and the agreement is found to be uniformly good. 
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1 Introduction 

In the last decade, Davis and Gray [1-5-] introduced the theory of nonlinear 
dynamics [6] and the theory of nonlinear mappings [7-9] into unimolecular 
reaction rate theory. These ideas were first applied by Gray and Rice [10] to the 
rate theory of unimolecular isomerization. Besides the introduction of the nonlin- 
ear dynamics, the topology of Gray-Rice theory differs fundamentally from that of 
the RRKM theory [-11-13]. Gray-Rice theory shows that it is necessary to have 
a third state in the phase space rather than the conventional two state representa- 
tions. The necessity for this classification of the regions of phase space follows from 
the following observation: besides the states identified with isomers A and B, as 
long as the molecule remains intact there must be a third state of the system, which 
is neither A nor B, with energy more than the barrier to isomerization. The 
existence of these three system states was clearly seen in trajectory studies [10]. 

Gray-Rice theory is plausible but still ignores the dynamics of intramolecular 
energy transfer as conventional RRKM theory does. Zhao and Rice [14, 15] 
extended Gray-Rice theory by developing a useful approximation to the rate of 
intramolecular energy exchange. This approximation takes advantage of the identi- 
fication of the barrier to intramolecular energy flow with the remnants of the loci of 
periodic motion associated with the most irrational frequency ratio in the system 
(the cantorus), which they replace with a curve defined by analogy with the analytic 
approximation to the separatrix. As shown already, the inclusion of the intra- 
molecular energy transfer dynamics in the analysis of the isomerization rate 
qualitatively improves the prediction of the reaction rate constant. 
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In this paper we study the intramolecular energy transfer in a model polyatomic 
molecular system, specifically the rate of isomerization of cyclobutanone. We 
examine the intramolecular energy transfer and compare the rate generated by the 
Zhao-Rice approximation to those of local Lyapunov function analysis [-16]. 

2 System model 

The potential energy surface for the model study is derived by Zhang, Chiang and 
Laane [17] from the fluorescence excitation spectra of cyclobutanone (C4H60). 
The kinetic energy and potential parameters are obtained by fitting to the spectro- 
scopic data. The structure of this molecule is shown in Fig. 1. 

This model assumes that by ignoring the minor corrections from other degrees 
of freedom of the molecule, the dynamics of the isomerization process is dominated 
by the coupling of C=O wagging and ring-puckering motions, without need 
for consideration of the other degrees of freedom of the molecule. Let s be 
the coordinate representing the out-of-plane carbonyl C=O wagging, and x the 
coordinate representing the ring-puckering motion, then the system Hamiltonian 
for the model cyclobutanone has the form 

H(x ,  s) = ½ga(s)p~ + ½gz(x)pZ~ + V(x ,  s) (1) 

with the kinetic energy coefficients expanded as 

gl(S) = giO) q - g?)s 2 "}- g(14)s4 -I- g?)s 6, 

~ ( 4 )  . .4.  ,,7(6) X 6 g2(x) g(20) -k g(22) X 2 -b ~42 * -k ~ 2  ' (2) 

and the potential energy surface 

V(x, s) = v l ( s )  + V2(x) + U(x, s) (3) 

with 

VI(s) = a l s  ~ + bl s 2, Vz(x)  = a2x  4 + b2x  z, U(x ,  s) = csx  3, (4) 

where Ps and Px are the conjugate momenta to the s and x coordinates. Specifically, 
the numerical parameters of the Hamiltonian function are chosen to be 

9(lo) = 135.00 × 103 U-1, g(a 2) = -- 17.69 × 103 U-i A - e ,  

9] 4) = 2.562 × 103u -1 A -4, 

9(2°)= 5.24 x 103u -1, 

9(24) = -- 27.76 × 103u -1 A -4, 

al = 3.34x 103cm -1 A -g, 

bl = - 5.26x 103cm -1 k -z, 

g(16) = -- 0.237 × 103u -1 A -6, 
o 2 

g(22 ) - 4 . 1 6 × 1 0 3 u - a A  - , 

9(26) = 34.69 × 103u - 1 A  -6, 

a2 = 1.3× 107cm - 1 A  -4, 

b2 = - 2.65 × 104cm - 1 A  -2, 

c = - 5.0× 105 cm - 1 A  -4. 
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Fig. 1. Chemical structure of cyclobutanone (C,,H60) 

The potential function Vl(s) along the reaction coordinate is plotted in Fig. 2. It 
has a 0.00094 a.u. barrier height energy. Fig. 3 gives the contours of the potential 
energy surface along C=O wagging (s) and ring-puckering (x) motions. 

The classical dynamics for this model system is governed by the Hamilton 
equations 

OH 3H OH OH 
= - ' = opx=- '  f , x  : - ( 5 )  

To display the dynamics structure of the system we use the Poincar6 surface of 
section representation. The surface of the section is chosen as the plane where the 
x-coordinate is equal to zero when its conjugate momentum Px is positive [18]. 
Since the potential surface V(x, s) in the present study is not homogeneous, the 
energy can be a control parameter for the system dynamics. For  a different system 
energy the dynamic structure may vary. Figure 4 shows the Poincar6 surface of the 
section for energy E = 0.0075 a.u.. The surface of the section for system energy 
E --- 0.01 a.u. is displayed in Fig. 5. 

Figures 4 and 5 show clearly that in the Poincar6 surface of section representa- 
tion a considerable portion of the surface is taken by quasi-periodic motion. The 
two elliptic fixed points are separated by the point ( s - -0 ,  p= = 0). Trajectories 
started on any of the closed curves evolve forever on the surfaces of the correspond- 
ing KAM tori [16]. Such a stable quasi-periodic motion gives no contribution to 
the isomerization reaction; only the chaotic trajectories, which wander over the 
entire energy hypersurface can lead to isomerization. More interesting is the fact 
that the region of the surface of the section with irregular motion can be separated 
into distinct subregions [19], and an irregular trajectory remains in that subregion 
in which it starts. These subregions are intimately intermingled with each other. 
The quasiperiodic motion covers about 36% of the available phase space region for 
E --- 0.007 a.u. and it is about 33% for E = 0.01 a.u. Figures 4 and 5 also show 
a chain of islands between the regions of quasi-periodic and chaotic motion; these 
correspond to nonlinear resonances in the system. In the case of E = 0.0075 a.u. 
shown in Fig. 4, it shows the 4 : 1 resonance corresponding to the frequency ratio of 
ring-puckering to C--O wagging motions. For the case of E = 0.01 a.u. this 
ratio turns out to be 3:1 as shown in Fig. 5. In the neighbourhoods of the 
resonance islands there are remnants of broken KAM torus (the cantorus). The 
cantorus may be thought of as a torus with an infinite number of deleted gaps 
caused by the overlapping of nearby resonance island chains. Phase space trajecto- 
ries can leak through the holes in the cantorus and thereby escape to cover the 
remainder of the surface of the section. The leakage can be very slow, in which 
case the cantorus serves as a substantial barrier to large scale diffusion of the 
trajectories [20]. 
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Fig. 2. The double well potential function for the model cyclobutanone system, along the reaction 
coordinate 
Fig. 3. The contours of the potential surface of cyclobutanone, ring-pucking (x) versus the C=O 
wagging angle ~b. The C=O wagging coordinate s defined in the test is given by the C=O bond distance 
(r) times the C=O wagging angle s = r~b 
Fig. 4. The Poincar~ surface of the section for the model of cyclobutanone at E = 0.0075 a.u. 
Fig. 5. The Poincar~ surface of the section for the model of cyclobutanone at E = 0.010 a.u. 

3 Gray-Zhao-Riee  rate theory of isomerization 

The G r a y - R i c e  analysis  of the rate  of i somer iza t ion  divides the  energy surface in to  
three regions in phase  space by  use of a redefined t rans i t ion  state - the  dynamica l  
separat r ix .  The  two closed regions inside the separatr ix ,  which represent  the  two 
isomers ,  are  deno ted  A and B; the exter ior  region between the separa t r ix  and  
energy b o u n d a r y  is deno ted  C. 

The  e lementary  rate  cons tants  descr ibing phase  po in t  t ransfer  amongs t  the  
states A, B and  C are given 

FAC FCA FBC FcB 
kAC = NA'  kCA = Nc' kBc = NB' kcB Nc' (6) 



A model study of intramolecular energy transfer 227 

where FAC is the forward flux from region A to region C; NA is the phase space 
volume of region A. FAC = FCA is obtained by consideration of the microscopic 
reversibility. 

Gray-Rice theory uses a zero-order analytic approximation to the separatrix 
with respect to the reaction coordinate [10, 14]. For the model cyclobutanone it is 
defined by 

= -~g~(s)p~ + V(s) + U(Y, s) Ssep(Ps  , S, 9~) 1 2 (7) 

and the time derivative of the separatrix is obtained by the use of Hamiltonian 
equations, 

= gl(s)p~ o[u(x ,  s) - U(x, s)] 
0s ' (8) 

where in Eqs. (7) and (8), ~ is a fixed value of x and is normally chosen to be at the 
saddle point of the potential energy surface. 

The flux going through the separatrix from one phase space region to another 
can be calculated from 

F ~  = f dp~dp~dsdxa(F~ - H)6(S)O(S)S,  (9) 

and the phase space volume for region A is given by 

N A - - - - -  ~dp~ dp. ds dx 3(E -- H)6(S) .  
3 

(10) 

These integrals can be simplified by the integration over the 6-functions, which 
yields the flux from A to C, 

with 

(', , 21/210[U(~, s) - U(x, s)]/Osl 
FAc = as ax 2 

J g~(x)" EE - ~ a l ( s ) ~  - v(~, s)] ~/~' 
(11) 

/~ = 2 */2 [ -- V(s) - U(2, s)]1/Zgl(s)-1/2, (12) 

and the normalization constant for phase region A, 

NA = f ds dx 4 sin- * [Pmin/p(x, S)] 
[gl(s)g2(x)]I/2 ' 

with 

(13) 

p(x, S) = 21/2 [E -- V(x, S ) ] 1 / 2 g 1 ( s ) - 1 / 2  , 

P m i n  = min [p(x, s),/~]. (14) 

Since the potential energy surface for the model cyclobutanone has a symmetric 
double well representing isomers A and B, it has NA ---- NB. Finally, the phase space 
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volume of region C is calculated from 

N c  = f dp, d p x d s d x , 5 ( E  - H )  - NA -- NB 

f o(E - V(x, s)) 2NA 
= 2~ d s d x  [gl (s )gz(X)] l /2  - (15) 

If one assumes that A to C and C to B transitions are independent processes, 
the rate constant kgB of the isomerization A ~ B  can be calculated from 
kAB = 1/(k21 + kcB1). For systems with complete chaotic dynamics motions, 
Gray-Rice theory gives satisfactory prediction of the rate of isomerization. 

As mentioned, Gray-Rice theory ignores intramolecular dynamics motion. It 
may yield misleading numerical factors in the prediction of reaction rate constants 
for systems with both chaotic and unstable quasi-periodic motions. To improve the 
Gray-Rice theory, Zhao and Rice introduced a semiclassical approximation for the 
representation of the intramolecular bottlenecks [14-15, 21-23]. One can imagine 
that a well-defined dividing surface can be drawn around the region corresponding 
to quasi-periodic motion of isomer A; this surface splits the lobe of the phase space 
corresponding to isomer A into an interior region A1 and an exterior region A2. 
The proposed dividing surface, of course, lies inside the separatrix and is intended 
to approximate the last broken KAM torus, namely, the torus which corresponds 
to the most irrational frequency ratio. Zhao and Rice then suggested using the 
functional form of Eq. (7) for this dividing surface, which implies that the n-th 
intramolecular bottleneck has the form 

= gg l ( s )p s  + V(s)  + U(,2, s) - E~(n). Sintra(Ps , s, .~) 1 2 (16) 

When the motion in the degree of freedom s is confined to the vicinity of the isomer 
equilibrium value, a harmonic approximation should be valid. This assumption 
yields 

(1) 
Es(n) = n + -~ hco~ (17) 

and 

02 V(x, s)] 1/2 
co~= gl(s)  c~s2 . . . . . . . . . . . .  (18) 

where the derivative is evaluated at the potential well minimum. For the system 
potential of cyclobutanone, the potential minimum appears at s = so = 1.68 a.u. 
and x = xo = 0. 

The rates of transport of phase points across the intramolecular bottlenecks 
can be calculated as follows. The net flow rate kA,A2 characterizes the spreading of 
phase points from the region with quasi-periodic motion to the region with chaotic 
motion, hence simulates the intramolecular energy transfer process. In Zhao-Rice 
theory one takes this net flow rate to be the intramolecular energy exchange rate. 

The kinetics of the three state mechanism of isomerization, with inclusion of the 
rate of intramolecular energy transfer, can be represented by a set of coupled 
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kinetics differential equations 

dNA, 
dt 

- -  -- kAvA2 N& -}- kAvA, NA2, 

clN~l 
dt 

- -  -- kB,R~ NB, + ku~B~ NB2, 

dN~2 
dt - (kA~A, -[- k&c)NA~ + kA, A~N& -}- kcA2Nc, 

dNB2 _ 

dt 
(kB2B1 + k~2c)NB2 + kB,B2NB, + kcB~Nc, 

clNc 
dt 

- -  -- (kcA 2 -t- kcB~) N c + kA2CNA 2 + kB~cNB~. (19) 

By solving this set of differential equations one obtains NAI(t) and NA2(t) for 
isomer state A. Since NA(t) = NA,(t) + NA2(t), one can fit the the functional form 
Na(t) = NA(0)exp(--kAc t) to obtain the rate constant kAc for the reaction from 
state A to state C. The rate between any other two states can be obtained in the 
same fashion, and finally the reaction rate of isomerization from isomer A to isomer 
B can be calculated from 

1 1 1 
+ (20) 

kA B -- kA C kcB" 

More detailed discussion on the methodology used for extracting the isomerization 
rate constant from this set of equations can be found elsewhere [153. 

4 Results and conclusions 

The integrals in the last section for the fluxes and the volumes of the phase space 
were evaluated by Monte Carlo integration. Large sets of random numbers 
(107-108 ) were used to guarantee good convergence. 

It has been shown [24] that for this model system of cyclobutanone the RRKM 
theory generates about an order of magnitude overestimate of the reaction rate 
constant. Gray-Zhao-Rice  theory rate constants agree within a factor of two with 
those derived from the trajectory calculations. This discrepancy is largely due to 
the uncertainty associated with the difference between the rate constants extracted 
from the three-state Gray-Zhao-Rice  model and the two-state RRKM-like traject- 
ory studies. Overall, it shows that the intramolecular energy transfer is a very 
important  factor for the model cyclobutanone. The inclusion of the intramolecular 
energy exchange process is unavoidable in order to correctly predict the isomeriz- 
ation rate in this model polyatomic molecular reaction. 

Table 1 shows the rate constants of intramolecular energy transfer derived from 
an analysis of Zho-Rice theory, and comparing to Lyapunov relaxation rate 
generated from a local Lyapunov function analysis. The results of these two 
theories are in fairly good agreement. 
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Table 1. The intramolecular energy exchange rate constants 
from Zhao-Rice theory and the local Lyapunov function analy- 
sis (in units of 10 -4 a.u. for all entries) 

Energy Zhao-Rice Lyapunov Analysis 

25 0.104 0.13 
75 0.113 0.18 

100 0.132 0.16 

As shown in this paper ,  the R R K M  pred ic t ion  of the i somer iza t ion  ra te  
cons tan t  of cyc lobu tanone  is an o rde r  of magn i tude  too  large. I t  poo r ly  descr ibes  
the compe t i t i on  between the rates of in t r amolecu la r  energy transfer  and  react ion.  
Davis '  non l inear  dynamica l  turnst i le  a p p r o a c h  gives accura te  dynamica l  descr ip-  
t ion,  bu t  general ly  requires  very heavy numer ica l  computa t ion .  A l though  in the 
present  s tudy  there is a r easonab le  agreement  between the Z h a o - R i c e  p red ic t ion  of 
the  in t r amolecu la r  energy transfer  rate  and  the re laxa t ion  ra te  of local  L y a p u n o v  
analysis  for the mode l  cyc lobutanone ,  it remains  to be de te rmined  if this k ind  of 
ag reement  is universal.  Besides, local  L y a p u n o v  analysis  for mul t id imens iona l  
p o l y a t o m i c  molecu la r  systems m a y  also lead to uncon t ro l l ab le  numer ica l  compu-  
ta t ion.  F o r  the present ,  we consider  our  analysis  f rom the G r a y - Z h a o - R i c e  theo ry  
as a c o m p u t a t i o n a l l y  feasible a l ternat ive  to Davis '  turnst i le  a p p r o a c h  and  to  the  
local  L y a p u n o v  analysis  for the ca lcula t ion  of the rate  of i n t r amolecu la r  reac t ion  in 
a system with bo th  quas i -per iod ic  and  chaot ic  mot ion .  
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